Quiz 10, MATH 240, Fall 2023

Write your name clearly.

Name:

UID:

(1) Let
$$\mathbf{w_1} = \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix}$$
 and $\mathbf{w_2} = \begin{pmatrix} -1 \\ -2 \\ 0 \end{pmatrix}$. Let $S = \{\mathbf{w_1}, \mathbf{w_2}\}$ and let $W = \operatorname{Span} S$.

- (a) (6 points) Is S an orthogonal set? Explain your reasoning.
- (b) (14 points) Let $\mathbf{v} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. Express \mathbf{v} as a sum of two vectors, $\mathbf{v} = \operatorname{proj}_W(\mathbf{v}) + \mathbf{v}^{\perp}$, where $\operatorname{proj}_W(\mathbf{v})$ is in W and \mathbf{v}^{\perp} is in W^{\perp} . Simplify your algebraic expressions.

(a) $\vec{w}_1 \cdot \vec{w}_2 = -2 + 2 = 0$, so S is an orthogonal set. (b) $\operatorname{proj}_{w}(\vec{v}) = \operatorname{proj}_{w}(\vec{v}) + \operatorname{proj}_{w}(\vec{v})$ = 0 + 0So $f_{\overline{w}} ke \quad \vec{v}^{\perp} = \vec{v}$. Then $\vec{v} = \vec{o} + \vec{v}^{\perp}$.